$\mathbf{T}\ensuremath{\hat{i}}\xspace{tensuremath{i}$

Authors: Veronica Rossetto¹, André Oliveira de Souza Lima, Marcus Adonai Castro da Silva¹

Institution: UNIVALI¹ – Universidade do Vale do Itajaí, Center of Technological Sciences of the Land and Sea, (Uruguai St., 458, Downtown, Zip Code 88302-202, Itajaí – SC)

Quorum sensing (QS) is a communication method of communication used to regulate collective bacterial behavior. When there is high cell density in a bacterial colony, auto-inducing molecules (AHL) are released into the environment, once these molecules pass a threshold, they permit the detection of cell mass and, in response, target gens are regulated. Since QS is responsible for the control of many physiological functions, such as the expression of virulence genes, it has been suggested that the inhibition of QS (QSI) can be used as a strategy to prevent bacterial pathogenicity. In search of QS inhibitors, this project evaluated sixty-four marine bacteria, isolated from the South Atlantic Ocean. The bacteria were screened with overlay tests using the indicating agents (IAs) of QSI, being Chromobacterium violaceum applied on IA (1) and Serratia marcescens applied on IA (2). The positive result is acknowledged by the formation of inhibition halos. The evaluated microorganisms are from nine genus. Of the one hundred twenty-eight tests done, twenty-three of them presented inhibition halos, being fourteen strains tested with IA (1) and nine strains tested with IA (2). Between the bacteria tested with IA (1), the genera Marinobacter, Pseudomonas e Stenotrophomonas stand out with 100% of activity followed by Halomonas with 20% of activity of the total of specimens of its genus. On the other hand, between the strains tested with IA (2), the genus Marinobacter again achieved 100% of activity, while Salinicola presented 50%, followed by Idiomarina with 33% of activity and finally an unidentified group of bacteria presented 25% of activity. We noticed six bacteria with inhibition halos in both Als: 2x Halomonas sp.; M. excellens; M. flavimaris and 2x Salinicola salarius. The microorganism that presented the biggest inhibition halo was H. hydrothermalis. Previous studies report that the genera Halomonas and Salinicola have QSI molecules that are analougus to AHL. It has been reported that Marinobacter spp is capable of inhibiting the production of violacein (dependent on QS from C. violaceum), by means of the formation of biofilm and virulent factors of S. marcescens, suggesting the production of many chemical inhibitors. This present study has found QSI potentials, however it is now necessary to study the process of and production of antagonist QS molecules so that new medications can be developed.

Key words: Quorum sensing; Biomoecules; Gammaproteobacteria.